Archivo de la etiqueta: neurobiología

Complejidad

¿Puede la neurociencia leer la mente de las personas?

Un estudio que se publicará en el siguiente número de la revista Psychological Science muestra una manera de clasificar diferentes estados mentales entre individuos usando la técnica de resonancia magnética funcional (fMRI).

El equipo de científicos de las universidades estadounidenses de Rutgers y de California en Los Ángeles (UCLA) ha desarrollado un sistema estadístico que permite establecer estados mentales entre individuos, de manera que se pueden identificar los patrones de conexiones neuronales que se expanden a través del cerebro entero y no como se pensaba hasta hace algunas décadas: con puntos específicos en el cerebro asociados a la realización de funciones específicas.

Según afirma Hanson de la Universidad de Rutgers, no se puede señalar un área específica del cerebro y afirmar que esa área es responsable del concepto de sí-mismo o de nuestra capacidad moral.

“El cerebro es mucho más complejo y flexible que eso. Tiene la capacidad de reestructurar las conexiones neuronales para funciones diversas. Examinando los patrones que surgen, se puede predecir con un alto grado de exactitud qué tarea mental concreta está procesando el cerebro de un individuo”, señala el científico.

Por lo tanto, esta investigación demuestra que si se pretende comprender la función cognitiva humana, se necesita estudiar el comportamiento neuronal a través de todo el cerebro, no analizar simples células o regiones.

Un resumen de esta investigación puede leerse en la nota de prensa de UCLA pinchando ACÁ.  Información complementaria ACÁ

cerebro mapas mentales

Esta nota la leí originalemente en Tendencias 21.

Anuncios

Cerebro & percepción

En la entrada de ayer hacía algunas referencias a la percepción.  ¿Qué pasa en nuestro cerebro? ¿Cómo es el mecanismo que nos lleva a tener determinada percepción? ¿Cuál es la relación entre el contexto y la actividad cerebral para definir una u otra percepción?

Un interesante artículo presentado en Science da pistas sobre la manera en que se articulan y coordinan diferentes zonas del cerebro para prestar atención a un fenómeno.

brain

Los neurocientíficos del McGovern Institute for Brain Research han descubierto que, en concreto, cuando nos fijamos en algo, las neuronas de la corteza prefrontal del cerebro se encienden al unísono y envían señales a la corteza visual para que ésta haga lo mismo.

De esta manera, se generan en el cerebro ondas de alta frecuencia que oscilan entre estas dos regiones cerebrales, espacialmente separadas entre sí.

Las ondas generadas, que son conocidas como oscilaciones gamma, ya habían sido asociadas con la percepción, la atención, el aprendizaje y la conciencia. Estas ondas se producen cuando los conjuntos de neuronas emiten señales eléctricas a una velocidad aproximada de unas 40 veces por segundo.

Según explica el director de la investigación, Robert Desimone, que actualmente dirige el McGovern Institute for Brain Research, “estamos especialmente interesados en las oscilaciones gamma de la corteza prefrontal porque esta región provoca influencias de ida y vuelta sobre otras partes del cerebro”.

“Sabemos que la corteza prefrontal se ve afectada en personas con esquizofrenia, con trastorno por déficit de atención con hiperactividad (TDAH) y otros trastornos cerebrales, y que las ondas gamma también se alteran en estas condiciones. Nuestros resultados sugieren que una sincronía neuronal alterada en la corteza prefrontal del cerebro podría interrumpir la comunicación entre esta región y otras áreas cerebrales, produciendo percepciones, pensamientos y emociones alteradas”, señala el científico.

Desimone explica lo que supone la sincronía neuronal utilizando la siguiente analogía: una fiesta abarrotada de gente, que se reparte por diversas habitaciones, hablando sin parar en todas ellas.

Si la gente comienza a levantar la voz aleatoriamente, el ruido de la fiesta aumenta. Sin embargo, sin un grupo de personas en una habitación comienza a cantar al unísono, la gente de la habitación contigua tendrá más probabilidades de escucharlas. Si, además, responde cantando como ellos, las dos habitaciones pueden comunicarse.

En el estudio aparecido en Science, Desimone buscó patrones de sincronía neuronal en dos “habitaciones” del cerebro relacionadas con la atención: el campo ocular frontal (que se encarga de los movimientos conjugados de los ojos, controla los movimientos oculares voluntarios, y es independiente de estímulos visuales), situado dentro de la corteza prefrontal; y la región V4 de la corteza visual.

Esta región V4 se encarga del procesamiento del color, recibe información visual desde otras áreas visuales, y retransmite dicha información visual hacia áreas infotemporales y parietales.

Dichos patrones de sincronía neuronal fueron buscados en dos monos macacos previamente entrenados para que mirasen múltiples objetos desplegados en una pantalla, y para que se concentrasen en uno de ellos al recibir una señal.

Los científicos registraron la actividad neuronal del campo ocular frontal (corteza prefrontal) y de la región V4 (corteza visual) de los monos, tanto cuando éstos prestaban atención a determinados objetos como cuando los ignoraban.

Así, descubrieron que cuando los monos atendían al objeto designado, las neuronas de ambas áreas mostraban un fuerte incremento en su actividad. Entonces, como si estuvieran conectadas, las oscilaciones establecidas en cada una de las áreas comenzaban a sincronizarse entre sí.

Desimone y sus colaboradores analizaron el cronometraje de la actividad neuronal y descubrieron que la corteza prefrontal se activaba en primer lugar por la atención, seguida por la corteza visual, como si la primera ordenase a la región visual que atendiese.

El desajuste temporal entre la actividad neuronal en estas áreas durante cada ciclo de ondas (de entre 8 y 13 milisegundos, según Science) reflejó la velocidad a la que las señales viajan de una región a otra, indicando asimismo que ambas regiones del cerebro se comunican la una con la otra.

Desimone sospecha que este patrón de oscilación no es únicamente característico de la atención, sino que podría representar también un mecanismo más general de comunicación entre diversas partes del cerebro.

Los hallazgos realizados en los cerebros de los monos respaldan las especulaciones que señalan que la sincronía gamma permite que extensas regiones del cerebro puedan comunicarse rápidamente unas con otras, lo que tiene importantes implicaciones para la comprensión y el tratamiento de trastornos como la esquizofrenia, la discapacidad visual o el déficit de atención.

Según Desimone, estos resultados ayudarían a “pensar cómo se deben estudiar y tratar dichos trastornos encontrando maneras de restaurar los ritmos gamma en las regiones del cerebro afectadas”.

Los científicos han estudiado durante más de 50 años las ondas gamma. Por ejemplo, en otro estudio reciente del MIT, el científico Li-Huei Tsai y sus colaboradores indujeron dichas ondas con luz láser aplicada, directamente, al cerebro de ratones, con el fin de analizarlas.

Aplicando una novedosa tecnología conocida como optogenética, que combina la ingeniería genética con la luz para manipular la actividad de células nerviosas individuales, esta investigación ayudó a explicar cómo son producidas las ondas gamma por el cerebro, y el papel de éstas en las funciones cerebrales.

Así, se reveló que las oscilaciones gamma reflejan la actividad sincrónica de una gran red de neuronas interconectadas, y que dichas oscilaciones estarían controladas por una clase específica de células inhibidoras conocidas como interneuronas de pico rápido, explicaron los científicos.

Activando mediante la optogenética dichas interneuronas los científicos indujeron ondas gamma en el cerebro de los ratones, demostrando así por primera vez que es posible inducir un estado específico cerebral activando un tipo de célula específica. El experimento demostró asimismo que los ritmos de estas ondas regulan el procesamiento de las señales sensoriales, lo que respalda la idea de que la sincronía de las ondas gamma son clave en el control de la percepción de los estímulos.

Tomado de: Tendencias 21.  Imagen de: National Science Foundation

Una conversación

El programa de divulgación científica REDES, nos habla de la neurobiología. Una de las disciplinas científicas más apasionantes de este tiempo.

Vodpod videos no longer available.

more about “Una conversación“, posted with vodpod

Neurobiología

En la última emisión del programa REDES de Eduard Punset, se habló de la plasticidad cerebral, un concepto interesante que permite relacionar nociones del psicoanálisis con los de la biología neuronal.

La plasticidad cerebral es la capacidad del cerebro para remodelar las conexiones entre sus neuronas. Está en la base de los procesos de memoria y de aprendizaje, pero a veces también interviene para compensar los efectos de lesiones cerebrales estableciendo nuevas redes. Estas modificaciones locales de la estructura del cerebro dependen del entorno y la experiencia, por tanto le permiten adaptarse.

Estamos programados para no estar programados, para ser únicos.